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This report describes a program which was written to simulate Real-Time Minimal-
Byte-Error Probability (RTMBEP) decoding of full unit-memory (FUM) convolutional
codes on a 3-bit quantized AWGN channel, This program was used to compute the
symbol-error probability of FUM codes and to determine the signal-to-noise (SNR)
required to achieve a bit error rate (BER) of 1 0~% for corresponding concatenated
systems. A (6, 6/30) FUM code, 6-bit Reed-Solomon code combination was found to
achieve the required BER at a SNR of 1.886 dB. The RTMBEP algorithm was then
modified- for decoding partial unit-memory (PUM) convolutional codes. A simulation
program was also written to simulate the symbol-error probability of these codes.

l. Introduction

To achieve reliable communications over a very noisy
channel with relatively small coding complexity, concatenated
coding systems using a convolutional code as the inner code
and a Reed-Solomon code as the outer code are usually
suggested (Fig. 1). In our baseline system, the inner code is a
(7, 1/2) convolutional code with Viterbi decoding (Ref. 1)
while the outer code is an 8-bit Reed-Solomon code. The
overall system achieves a bit error rate (BER) of 1076 with a
signal-to-noise ratio (SNR) of 2.53 dB. Our goal is to obtain a
2-dB improvement in SNR (i.e., to find an inner code with a
corresponding decoding algorithm to achieve a BER of 107¢ at
a SNR of 0.53 dB). It was found by Lin-nan Lee (Refs. 2
and 3) that the use of byte-oriented full unit-memory (FUM)
convolutional codes in conjunction with real-time minimal-
byte-error probability (RTMBEP) decoding algorithm provides
an improvement of about 0.3 dB compared to regular bit-
oriented convolutional codes with same state complexity. In
this report, we simulated the RTMBEP decoding of FUM
codes on a 3-bit quantized additive white Gaussian noise

(AWGN) channel (as shown by the dashed box in Fig. 1). This
simulation program is used as a tool to compute symbol-error
probability for FUM codes. We then modified the RTMBEP
algorithm for decoding a subclass of FUM codes called
partial-unit-memory (PUM) codes (Ref. 4). A simulation pro-
gram was also written for this modified algorithm to simulate
symbol-error probability of PUM codes.

Il. Simulation of FUM Codes With RTMBEP
Decoding Algorithm

A general (lo, ko/no) unit-memory convolutional encoder is
shown in Fig. 2. Here, we have ko bits of input to be encoded,
lo bits of delayed input, and no bits of encoded output. For
lo=ko we have FUM convolutional codes. For lo < ko we
have PUM convolutional codes. '

A (ko, ko/no) FUM code may be written as

b, =a G, ta,_

‘ G,; t=12,...
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where a, is the k -bit byte of information to be encoded at
time ¢, b is the correspondmg encoded no-bit byte, and G,

and G, are ko X no encoding matrices (by conventlon
a, —0) The sequence {b} is sent over a 3-bit quantized
AWGN channel and the correspondmg sequence r, is received.
For convenience, we denote af, .1, to be [a;, 854, .- a,1]
and similarly for b[t' AP T 1y

The RTMBEP decoding rule (Ref. 3) chooses its estimate 3
to be the value of a, which maximizes P(a,lr, PN ) where
£y, r+a] 18 the observed sequence with elay " A. This
algorlthm is based on the facts that the channel is memoryless
and that the code has unit memory to develop a recursive
method for computing P(atlr[l’ A ])

P(a,,r )
— [1,z+A]
P(atlr[l,t+A]) -
P(at, r[1,t+A])
a
t
P(at’r[l,t+A]) = P(at’r[l,t])P(r[t+1,t+A] la,)

P(a

t’r[l,t])

E P(at-—l ’ l'[1,t—1])
By

X Pa,,r, t—l’r[I,t—I])

-k
ko Z P, vy, ) P(,Ib)

8s1

P(r[t+i,t+A] |at+i——1) = Z P(r[t+i+1,t+A] lat+i)
Brri
XP(at+z’ t+t|at+t‘—1)

—~k
27 Zp(r[t+i+1,t+A] |at+z')

Bprq

XP(rt+t t+i)
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The last recursion is initialized with i = A

P(rpl8,50) = Z Py, p a8

A
=2 Z: P, alb,40)
a

and computed backward with i=A - 1,..., 1. Here, we
assume all information sequences are equally likely (ie.,
P(a,) = 27%). We modified the algorithm slightly so that it is
computer compatible. Let

f@) = Plyry )

h(a = P(r

t+i- 1) [+ ++A] lat+i——1)

At time ¢ = O (initialization) the whole system is set up as
follows:

(1) Set up coder matrix which gives b, for each a, anda, |

(2) Simulate r, r,,...,r, ona 3- bit quantized AWGN
channel and compute probability matrices P(r,| b b

(3) Setf(a, = 0)=1and f(a, #0)=0

For each time ¢ (main loop; ¢=1, 2,...) the following

steps are taken:

Step 0: Simulate r, , and compute P, Al b,, ,) matrix

Step 1: Compute

f@) =Y Fa,_)Pelb)
31
and normalize
f(@a,) = f@@)/f(0)

Note that the normalization is needed since, for large ¢ f(a,)
tends to go to zero.




Step 2: Set
h@ay) = Z Pt a0,
A

and normalize

_ h(a,ny)

h(a =TT ©

t+A~—1)
Step3: Fori=A-1toi=1,compute

@) = Z h(a, ) P, ,1b,,)

i
and normalize

h(a

_ t+i—1)

h(@a, ) = 1(0)

Step 4: Choose the estimate @, such that

f@)n@,)=>ra)n(@) ; foralals
and compute the probability
f@)h@,)

P(a =at|r

t

) T~
e Zf(a)h(a)

Note that this probability could be used as a reliability
indicator for soft decision (including erasure) decoding of the
convolutional code. Since large A requires more computation,
it is desirable to keep A as small as possible. It is shown by Lee
(Ref. 3) that A =8 gives virtually the same performance as
A =00 We checked the simulation with several small FUM
convolutional codes and ran it for the maximal dpg,,
(6, 6/18), (6, 6/24) codes found by Lin-nan Lee (Ref. 2) and a
(6, 6/30) code found by Pil J. Lee. These codes are given in
Table | in hexadecimal format. Simulation results are given in
Table 2 for different levels of signal-to-noise ratio, & I;/No (EI;
is the input bit energy at the inner encoder and No is the
one-sided noise power speciral density.) The symbol (byte)
error probability £, which is calculated based on 8000-byte
decoding 51mulat1on is plotted versus £, /No in Fig. 3 for the
three FUM codes. These FUM codes are concatenated with
various 6-bit rate k/n (n=2%- 1 =63) Reed-Solomon codes.

Given that the interleaving is perfect, the overall bit-error
probability can be computed as

> topa-pr

=t+1

ntl
b 2n

where ¢ is the error correcting capability (r=n- k/2) and p is
the symbol-error probability at the inner decoder output. The
required p to achieve a BER of 107% is shown in Table 3 for
several 6-bit Reed-Solomon codes. From Fig. 2, the require-
ment in p spec1f1es a requirement in Eb/No and E,/No
(£,/No = nE; /kNo) as also shown in Table 3. In Fig. 4 we
plot the 51gna1 to-noise ratio (E /No) required to achieve a
BER of 1079 versus the Reed- Solomon code rate for the three
FUM codes. An improvement of 0.64 dB is obtained with the
(6, 6/30) code compared to the baseline (7, 1/2) convolutional
code, Reed-Solomon code combination. To achieve a 2 dB
improvement in required £, /No, FUM codes with higher state
space complexity will be required. Unfortunately, it takes a
long time to search for and to simulate such codes. For
example, it takes 16 hours to simulate one point for a
(7,7/28) FUM code on a fast computer. Therefore, we
consider next a subclass of FUM codes called partial-unit-
memory (PUM) codes (Ref.4) which may provide similar
performance with less complexity.

lll. Simulation of PUM Codes With Modified
RTMBEP Decoding Algorithm

Leta, = at at (the colon denotes concatenation of ko - 1 -
bit byte @, with [ -bit byte a ) be the k -bit byte of
information to be encoded at t1me tand b, be the correspond-
ing encoded n_-bit byte. A (I, & /n ) PUM code may be
written as (see Fig. 2)

— o~ .
b, =a G, 8, G

r=1,2,3,...

where G0 and G1 are encoding matrices with dimensions ko X
n, and [ X n_, respectively. The state complexity is defined
to bel, Wthh is the number of delay cells required to realize

the encoder Let G be the flrstk -1, rows ofG andG be
the remaining 7| rows then

b =%.G +2.6_+23, . G

-~
~
Q
-
Q
-~
i
-
—

We want to find the estimate aj which maximizes P(a,|
Ipq, 1,JrA]) where Y[y, t+a] 1S the received sequence with delay
A. As in Section II, we have
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P(at, r[1,t+A])

P(atlr[l,t+A]) =
Pe, iy, peay)

[

Pla, r[l,t+A]) = P(at’r[l,t])P(r[t+l,t+A] la,)

I

-k
250N N Pla, uxy ) PG, D)

By

P(at, r“,t])

However, taking into account that b, just depends on a,_,, we
can write

- 2k
Pa,r; ) = 2 "EP(rtlbt) E P@,_y %y )

”~ -~
81 L |

= 2"‘”2 P(rtibt)P(at—l’rl,t~l])

|

where

P(at—l’r[l,t—ll) = Z Pla, 515 0m11)

[y
-1

could be computed outside of the a, loop. Since the dimension
of a,_, (ie., I,) is less than the dimension of a, ; (ie., k,),
this results in a saving of computation time. For example, with
k, =6, 1, =6 (regular FUM codes) it requires 4096 multiplica-
tions compared to 2048 multiplications for the case %, =6,
I, = 5 or 1024 multiplications for the case k, = 6,7, = 4.

“On the other hand,

P(x = P(r

[t+1,2+A] Iat) [#+1,2+A] |at’at

= P(r[t+l,t+A] Iﬁt)

SINCE X[ 441,244 is independent of @,. A backward recursion is
developed to compute P(t) iy, eea) ) B
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-k ~
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X P(x

i t+i)

-k ~
27" z P(r[t+i—1,t+A] |at+i)

T
t+i

X E P(r,,, 1b,,)

This recursion is initialized with i = A

~ P
Pty a8, ) =277 E : LWL YY)
Bt A

For k,=6, I, =5 this recusion requires 1048 multiplica-
tions compared to 4096 multiplications of the regular FUM

codes (k, =6, [, = 6). Let
f(at) = P(at’ r[l,t])
h@i) = POy ay Bpeiny)

Then the modified algorithm for PUM codes is summarized as
follows: At time ¢ = 0, the system is initalized as follows:

(1) Set up coder matrix which gives b, for each a, and a,_,

(2) Simulate r,, r,,..., ry on a 3-bit quantized AWGN
channel and compute probability matrices P(x;lb,)




(3) Setf(a,=0)=1andf(a,#0)=0
Attimet(¢=1,2,...) the following steps are taken:
Step 0: Simulate r,,, and computeP(r,, , |b,, .

Step 1: Compute

16 = 20 fay)
T
For each a,, compute
f@) =D F@,_)Pk,Ib)

A1

fla,) = f(a)/f(0)

Step 2: Set
h@, ) = Z Pt plb,0)
3+ A
. _ @y
hBraad) = 00y

Step 3: Fori=A-1toi=1,compute foreachd,,

W) = Duh@) D0 Pplby,)
Brvi Bpvs

h@,.;y)

"G = 0y

) matrix.

Step 4: Choose the estimate a;’ such that (recall that
h(a,) =n@,)

@) h@)) = f@) h,)
for all a,’s and compute as a reliability indicator

| £@%) h(@%)
el D re) @)

t

f—
P(a, = alr

Again, this reliability indicator could be used for soft
decision (including erasure) decoding of the convolutional
code.

We checked the simulation with some small PUM codes
given in Table 4. The simulated symbol-error probability for
each code is also given in Table 4. Good PUM codes with
hi.gher state complexity are needed to achieve the required
performance.

IV. Summary

A program is written to simulate the RTMBEP decoding of
FUM codes on a 3-bit quantized AWGN channel. This program
is used to compute the symbol-error probability for various
FUM codes. From this, the SNR required to achieve a BER of
1076 can be determined for a concatenated system. A 6, 6/30)
FUM code is found to achieve the required BER at a SNR of
1.886 dB. Finally the RTMBEP algorithm is modified for
decoding a subclass of FUM codes called PUM codes. A
simulation program is also written to simulate symbol-error
probability of PUM codes.
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Table 1. Some UM convolutional codes

Rate Ho | ko

G

G

1} 1 Free
1/3 18 6  38D30 031CB 16
1C698 06396
0E34C 0C72C
07986 18E19
234C3 30072
31A61 218E5
1/4 24 6  83EEBO 3C52D3 24
41F758 78A5A6
22FBSC F14BOD
1375C6 E6865A
OBBAC3 CD1CB4
opps61 9E2969
1/5 30 6  20FBACIC  OF14B4C1 29

107DD60E 1E296982
08BEE307 3C52C344
04DD71A3 39A19688
02EEBOF1 33472D10

01F75878

278A5A60

Table 2. Symbo!-error probability for codes in Table 1

E'b/No (dB) 0.50 0.75 1.00 1.25 1.50

(6.6/18) P 0.05925 0.0355 0.02125 0.01275

6,6/24) Py 0.060875 0.03775 0.02275 0.01225 0.00675
0.024625  0.0125 0.007875  0.005

(6,6/30) Pg




Table 3. Signal-to-noise ratio requirement to achieve a BER of 10-6

k 45 47 49 51 53 55 57
kin 0.7143 0.7460 0.7778 0.8095 0.8413 0.8730 0.9048
(dB) -1.461 -1.272 -1.091 -0.918 -0.751 -0.590 ~0435
) 4 0.02875 0.02294 0.01764 0.01290 0.00879 0.00538 0.00277
(6,6/18) :
E’b/No dB) 1.104 1.212 1.342 1.494 1.681 1.920
Eb/No (dB)  2.565 2484 2.433 2,412 2.432 2,510
(6,6/24)
E"b/No (dB)  0.887 0.995 1.109 1.233 1.388 1.587
Eb/No (dB)  2.348 2.267 2.200 2.151 2.139 2177
(6,6/30)
E'b/No (dB) 0.758 0.846 0.968 1.169 1.392
Eb/No (dB) 2.030 1.937 1.886 1.920 1.982

Table 4. Simulated symbol-error probability for some PUM codes

Codes G, G, E’b/No (dB) and Pg
(1,2/4) F 6 2dB 4 dB 6 dB
3 0.04036 0.00665 0.00039

3,4/8) FF 17 25dB 3.0dB 3.5dB 4.0dB 4.5dB
OF 2D 0.00946 0.00376 0.00125 0.00034 0.00005
33 8B
55
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Fig. 2. A general (I,, ko/no) unit-memory convolutional encoder
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Fig. 3. Symbol error probability for three FUM codes
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